Powered Tate Pairing Computation

نویسندگان

  • Bo Gyeong Kang
  • Je Hong Park
چکیده

In this paper, we introduce a powered Tate pairing on a supersingular elliptic curve that has the same shortened loop as the modified Tate pairing using the eta pairing approach by Barreto et al. The main significance of our approach is to remove the condition which the latter should rely on. It implies that our method is simpler and potentially general than the eta pairing approach, although they are equivalent in most practical cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast computation of Tate pairing on general divisors for hyperelliptic curves of genus

For the Tate pairing implementation over hyperelliptic curves, there is a development by DuursmaLee and Barreto et al., and those computations are focused on degenerate divisors. As divisors are not degenerate form in general, it is necessary to find algorithms on general divisors for the Tate pairing computation. In this paper, we present two efficient methods for computing the Tate pairing ov...

متن کامل

Tate pairing computation on the divisors of hyperelliptic curves for cryptosystems

In recent papers [4], [9] they worked on hyperelliptic curves Hb defined by y +y = x+x+b over a finite field F2n with b = 0 or 1 for a secure and efficient pairing-based cryptosystems. We find a completely general method for computing the Tate-pairings over divisor class groups of the curves Hb in a very explicit way. In fact, Tate-pairing is defined over the entire divisor class group of a cur...

متن کامل

Tate Pairing Implementation for Hyperelliptic Curves y2 = xp-x + d

The Weil and Tate pairings have been used recently to build new schemes in cryptography. It is known that the Weil pairing takes longer than twice the running time of the Tate pairing. Hence it is necessary to develop more efficient implementations of the Tate pairing for the practical application of pairing based cryptosystems. In 2002, Barreto et al. and Galbraith et al. provided new algorith...

متن کامل

Fast computation of Tate pairing on general divisors of genus 3 hyperelliptic curves

For the Tate pairing computation over hyperelliptic curves, there are developments by DuursmaLee and Barreto et al., and those computations are focused on degenerate divisors. As divisors are not degenerate form in general, it is necessary to find algorithms on general divisors for the Tate pairing computation. In this paper, we present two efficient methods for computing the Tate pairing over ...

متن کامل

Tate pairing for y2=x5-αx in Characteristic Five

In this paper, for the genus-2 hyperelliptic curve y2 = x5 − αx (α = ±2) defined over finite fields of characteristic five, we construct a distortion map explicitly, and show the map indeed gives an input for which the value of the Tate pairing is not trivial. Next we describe a computation of the Tate pairing by using the proposed distortion map. Furthermore, we also see that this type of curv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005